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Introduction

Isotropy is a (new) mathematical phenomenon with manifestations in
category theory, algebra, and theoretical computer science.

We will see that isotropy encodes a generalized notion of conjugation
or inner automorphism for many prominent categories in mathematics.
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Motivation

Recall that an automorphism α of a group G is inner if there is an
element s ∈ G such that α is given by conjugation with s, i.e.

(g ∈ G ) α(g) = sgs−1.

It turns out that the inner automorphisms of a group can be
characterized without mentioning conjugation or group elements at
all!
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Motivation
To see this, observe first that if α is an inner automorphism of a group
G (induced by s ∈ G ), then for each group morphism f : G → H with
domain G we can ‘push forward’ α to define an inner automorphism

αf : H
∼−→ H

by conjugation with f (s) ∈ H (so that αidG = α), and this family of
automorphisms (αf )f is coherent, in the sense that it satisfies the
following naturality property: if f : G → G ′ and f ′ : G ′ → G ′′ are
group homomorphisms, then the following diagram commutes:

G ′ G ′

G ′′ G ′′

αf

f ′ f ′

αf ′◦f
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Bergman’s Theorem

For a group G , let us call an arbitrary family of automorphisms(
αf : cod(f )

∼−→ cod(f )
)
dom(f )=G

with the above naturality property an extended inner automorphism of G .

Theorem (Bergman [1])

Let G be a group and α : G
∼−→ G an automorphism of G. Then α is an

inner automorphism of G iff there is an extended inner automorphism
(αf )f of G with α = αidG .

This provides a completely element-free characterization of inner
automorphisms of groups! They are exactly those group automorphisms
that are ‘coherently extendible’ along morphisms out of the domain.
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Covariant Isotropy

We have a functor Z : Group→ Group that sends any group G to
its group of extended inner automorphisms Z(G ). We refer to Z as
the covariant isotropy group (functor) of the category Group.

In fact, any category C has a covariant isotropy group (functor)

ZC : C→ Group

that sends each object C ∈ C to the group of extended inner
automorphisms of C , i.e. families of automorphisms(

αf : cod(f )
∼−→ cod(f )

)
dom(f )=C

in C with the same naturality property as before, i.e. natural
automorphisms of the projection functor C/C→ C.
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Covariant Isotropy

We can also turn Bergman’s characterization of inner automorphisms
in Group into a definition of inner automorphisms in an arbitrary
category C: if C ∈ C, we say that an automorphism α : C

∼−→ C is
inner if there is an extended inner automorphism (αf )f ∈ ZC(C ) with
αidC = α.

Notice that Group is the category of (set-based) models of an
algebraic theory, i.e. a set of equational axioms between terms,
namely the theory TGrp of groups. So Group = TGrpmod.

We will generalize ideas from the proof of Bergman’s Theorem to give
a ‘syntactic’ characterization of the (extended) inner automorphisms
of Tmod, i.e. of the covariant isotropy group of Tmod, for any
so-called quasi-equational theory T.
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Quasi-Equational Theories

What is a quasi-equational theory? (Also known as: partial Horn
theory, essentially algebraic theory, cartesian theory, finite limit
theory.)

First, we need the notion of a signature Σ, which consists of a
non-empty set ΣSort of sorts, and a set ΣFun of (typed)
function/operation symbols.

For example, the signature for groups has one sort X and three
function symbols · : X × X → X , −1 : X → X , and e : X . The
signature for categories has two sorts O,A and four function symbols
dom, cod : A→ O, id : O → A, and ◦ : A× A→ A.
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Quasi-Equational Theories

We can then form the set Term(Σ) of terms over Σ, constructed
from variables and function symbols, as well as the set Horn(Σ) of
Horn formulas over Σ, which are finite conjunctions of equations
between terms.

A quasi-equational theory over a signature Σ is then a set of
implications (the axioms of T) of the form ϕ⇒ ψ, with
ϕ,ψ ∈ Horn(Σ) (see [6]).

The operation symbols of a quasi-equational theory are only required
to be partially defined. If t is a term, we write t ↓ as an abbreviation
for t = t, meaning ‘t is defined’.
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Examples

Any algebraic theory, whose axioms all have the form > ⇒ ψ, where
> is the empty conjunction. E.g. the theories of sets, semigroups,
(commutative) monoids, (abelian) groups, (commutative) rings with
unit, etc. For example, the theory TGrp of groups has the following
axioms:

> ⇒ x · y ↓ ∧ x−1 ↓ ∧ e ↓,

> ⇒ x · (y · z) = (x · y) · z ,

> ⇒ x · e = x ∧ e · x = x ,

> ⇒ x · x−1 = e ∧ x−1 · x = e.
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Examples

The theories of categories, groupoids, categories with a terminal
object, and cartesian (i.e. finitely complete) categories. E.g. two of
the axioms of the theory of categories are

g ◦ f ↓⇒ dom(g) = cod(f ),

dom(g) = cod(f )⇒ g ◦ f ↓ .

The theory of strict monoidal categories.

The theory of functors J → Tmod for a small category J and
quasi-equational theory T. In particular, the theory of presheaves
J → Set.
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Proof of Bergman’s Theorem

Let us focus on a specific idea in the proof of Bergman’s Theorem.

Consider the group G 〈x〉 obtained from G by freely adjoining an
indeterminate element x. Elements of G 〈x〉 are (reduced) group
words in x and elements of G .

The underlying set of G 〈x〉 can be endowed with a substitution
monoid structure: given w1,w2 ∈ G 〈x〉, we set w1 · w2 to be the
reduction of w1[w2/x], and the unit is x itself.

If w ∈ G 〈x〉, w commutes generically with the group operations if:

I In G 〈x1, x2〉, the reduction of w [x1/x]w [x2/x] is w [x1x2/x];
I In G 〈x〉, the reduction of w−1 is w [x−1/x];
I In G 〈x〉, the reduction of w [e/x] in G 〈x〉 is e.
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Proof of Bergman’s Theorem

E.g. if g ∈ G , then the word gxg−1 ∈ G 〈x〉 commutes generically
with the group operations:

I gx1g−1gx2g−1 ∼ gx1x2g−1

I (gxg−1)−1 ∼ (g−1)−1x−1g−1 ∼ gx−1g−1,

I geg−1 ∼ gg−1 ∼ e.

Let Z(G ) be the group of extended inner automorphisms of G , and let
Inv(G 〈x〉) be the subgroup of invertible elements of the substitution
monoid G 〈x〉. (E.g. gxg−1 is invertible, with inverse g−1xg .)

Then the proof of Bergman’s Theorem shows that the group Z(G ) is
isomorphic to the subgroup of Inv(G 〈x〉) consisting of all words that
commute generically with the group operations.
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The Isotropy Group of a Quasi-Equational Theory

Fix a quasi-equational theory T over a signature Σ, and let Tmod be
the category of (set-based) models of T. For simplicity, we will
generally assume (in this talk) that T is single-sorted.

We will now give a logical/syntactic characterization of the covariant
isotropy group

ZT : Tmod→ Group

of Tmod.

Fix M ∈ Tmod. As for groups, we can construct a T-model M〈x〉,
which is the coproduct of M with the free T-model on one generator
x. Elements of M〈x〉 are (equivalence classes of) Σ-terms over x and
elements of M. We can then endow the underlying set of M〈x〉 with
a substitution monoid structure, in the same way as for groups.
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The Isotropy Group of a Quasi-Equational Theory

In my thesis, I proved:

Theorem ([7])

Let T be a quasi-equational theory over a (single-sorted) signature Σ. For
any M ∈ Tmod, the covariant isotropy group ZT(M), i.e. the group of
extended inner automorphisms of M, is isomorphic to the group of
invertible elements t of the substitution monoid M〈x〉 that commute
generically with the function symbols of Σ, in the sense that if f is any
n-ary function symbol of Σ, then

t[f (x1, . . . xn)/x] = f (t[x1/x], . . . , t[xn/x])

holds in M〈x1, . . . , xn〉 (the coproduct of M with the free T-model on n
generators x1, . . . , xn).
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The Isotropy Group of a Quasi-Equational Theory

In particular, an automorphism α : M
∼−→ M in Tmod is inner iff

there is some t ∈ ZT(M) that induces α, i.e.

(m ∈ M) α(m) = t[m/x] ∈ M.

Thus, Bergman’s (syntactic) characterization of the (extended) inner
automorphisms of Group = TGrpmod extends to the category Tmod
of (set-based) models of any quasi-equational theory T.
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Examples

If T is the theory of sets, then T has trivial isotropy group, i.e.
ZT(S) ∼= {x} for any set S , so the only inner automorphism of a set
is the identity function.

If T is the theory of groups, then Bergman proved
∀G ∈ Tmod = Group that

ZT(G ) ∼= {gxg−1 ∈ G 〈x〉 | g ∈ G} ∼= G .

If T is the theory of monoids, then ∀M ∈ Tmod = Mon we have

ZT(M) ∼= {mxm−1 ∈ M〈x〉 | m is invertible in M} ∼= Inv(M).
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Examples

If T is the theory of abelian groups, then ∀G ∈ Tmod = Ab we have

ZT(G ) ∼= {x,−x} ∼= Z2.

If T is the theory of commutative monoids or unital rings, then the
isotropy group of T is trivial.

If T is the theory of (not necessarily commutative) unital rings, then
∀R ∈ Tmod = Ring we have

ZT(R) ∼= {rxr−1 ∈ R〈x〉 | r ∈ R is a unit} ∼= Unit(R).

If T is the theory of categories, groupoids, or categories with a
terminal object, then the isotropy group of T is trivial.
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Examples

If T is the theory of strict monoidal categories, then for any strict
monoidal category C we have

ZT(C) ∼= Inv
(
CO ,⊗C, eC

)
,

the group of invertible elements of the object monoid
(
CO ,⊗C, eC

)
of

C. In particular, if F : C ∼−→ C is a (strict monoidal) automorphism of
a strict monoidal category C, then F is inner iff there is some
invertible object c ∈ C such that F is given by conjugation with c , i.e.

(a ∈ CO) F (a) = c ⊗ a⊗ c−1

and

(f ∈ CA) F (f ) = idc ⊗ f ⊗ idc−1 .
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Some Closure Properties

Let T be a quasi-equational theory over a (single-sorted) signature Σ,
let c /∈ Σ be a new constant symbol, and let Tc be the theory over
the signature Σ ∪ {c} with the same axioms as T. Then for any
M ∈ Tmod and cM ∈ M, we have

ZTc

(
M, cM

)
∼=
{

(αf )f ∈ ZT(M) : αidM

(
cM
)

= cM
}
.

Let T be a quasi-equational theory over a (single-sorted) signature Σ,
let f /∈ Σ be a new non-constant function symbol, and let Tf be the
theory over the signature Σ ∪ {f } with the same axioms as T. Then
the covariant isotropy group of Tf is trivial.
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Some Closure Properties

Let T1 and T2 be quasi-equational theories over disjoint signatures
Σ1 and Σ2, and let T1 +T2 be the union of the theories T1 and T2.
Then

ZT1+T2
∼= ZT1 ×ZT2 .
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Isotropy Groups of Functor Categories

We can also characterize the covariant isotropy groups of functor
categories of the form TmodJ , for a quasi-equational theory T and
small category J . In particular, we can characterize the covariant
isotropy groups of presheaf categories SetJ .

Fix a quasi-equational theory T. Given a small category J , we can
define a quasi-equational theory TJ whose models are functors
J → Tmod, i.e.

TJmod ∼= TmodJ .
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Isotropy Groups of Functor Categories

In my thesis, I then proved the following theorem:

Theorem ([7])

Let T be a (single-sorted) quasi-equational theory (satisfying a few
technical assumptions), and let J be a small category, with Aut(IdJ ) the
group of natural automorphisms of IdJ : J → J (which we may call the
global isotropy group of J ). For any functor F : J → Tmod, we have

ZTmodJ (F ) ∼= lim(ZT ◦ F )× Aut(IdJ ) ∈ Group.

In particular, for any functor F : J → Set, we have

ZSetJ (F ) ∼= Aut(IdJ ).
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Isotropy Groups of Functor Categories

In particular, if F : J → Set is a functor and α : F
∼−→ F is an

automorphism, then α is inner iff there is some ψ ∈ Aut(IdJ ) with

(k ∈ J ) αk = F (ψk) : F (k)
∼−→ F (k).

So the covariant isotropy group functor Z : SetJ → Group is
constant on the global isotropy group Aut(IdJ ) of J .

This contrasts dramatically with the contravariant isotropy group
functor

(
SetJ

)op → Group, which is representable (cf. [3]).
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Isotropy Groups of G -Sets

For any group G , the covariant isotropy group functor
Z : SetG → Group of the category of G -sets is constant on the
centre Z (G ) of the group G .

More generally, for any monoid M, the covariant isotropy group
functor Z : SetM → Group of the category of M-sets is constant on
the group Inv(Z (M)) of invertible elements of the centre of M.
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Connections with Topos Theory

If T is a quasi-equational theory, then T has a classifying topos B(T),
which is a cocomplete topos that has a universal model of T and
classifies all topos-theoretic models of T ([4], [5]).

It has been shown that any Grothendieck topos E has a canonical
internal group object called the isotropy group of the topos, which
acts canonically on every object of the topos and formally generalizes
the notion of conjugation ([3]).

The covariant isotropy group ZT of a quasi-equational theory T is in
fact the isotropy group object of the classifying topos B(T) of T ([3],
[4]).
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Conclusions

Bergman’s element-free characterization of the inner automorphisms
of groups can be used to define inner automorphisms in arbitrary
categories.

We have extended Bergman’s syntactic characterization of the
(extended) inner automorphisms of groups, i.e. of the covariant
isotropy group of Group = TGrpmod, to the covariant isotropy group
of Tmod for any quasi-equational theory T.

Using this characterization, we have obtained concrete descriptions of
the (extended) inner automorphisms in several different categories:
Set,Group,Mon,Ab,Ring,Cat,StrMonCat,TmodJ ,SetJ , . . .

This work also represents a contribution to the more general project
of characterizing the isotropy group objects of Grothendieck toposes.
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Some Future Directions

Given (disjoint) theories T1 and T2, characterize the covariant
isotropy group of the category of models of T1 in T2mod (i.e. the
category of models of T1 ⊗T2) in terms of the covariant isotropy
groups of T1 and T2 (subsuming the examples of strict monoidal
categories and functor categories TmodJ ).

Characterize the covariant isotropy groups of Grothendieck toposes,
i.e. categories Sh(C, J) in terms of the (small) site presentation
(C, J). Categories of the form Sh(C, J) are categories of models for
an (infinitary) quasi-equational theory.

Characterize covariant isotropy monoids, in connection with Freyd’s
notion of core algebras ([2]) in the study of polymorphism.
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Thank you!
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